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The algorithm described in [I] for estimating the optimum combining

weights for the Ka-band (33.7-GHz) array feed compensation system is compared
with the maximum-likelihood estimate. This provides some improvement in per-

formance, with an increase in computational complexity. However, the maximum-

likelihood algorithm is simple enough to allow implementation on a PC-based com-

bining system.

I. Introduction

We consider the problem of estimating combining

weights for a signal received by an antenna array. The

signal is modeled as a Gaussian random variable, and in-
dependent Gaussian noise is added in each channel. An es-
timation method that has been proposed is treated in [1].

Here we compare that method with the method that uses

maximum-likelihood (ML) estimates of the pertinent pa-
rameters. The computations required for these estimates,

while more complex than the computations of [1], are well

within the capabilities of a small on-site computer.

where the ilk(i) and fi(i) are independent complex Gaus-
sian random variables, ilk(i) is U(0,2ak2), and a(i) is

N(0, 1). Then I

c'_k = E(_?k(i)) = 2cr_6jk + SjSk (2)

If (_ is the complex K x K matrix with entries cjk,

then the real and imaginary parts of the _(i) (for k =

1,..., K, i fixed) have a 2K-dimensional distribution with

density 2

II. The Maximum-Likelihood Equations

The received signal in the kth channel at time i is as-

sumed to be

_k(i) = Skfi(i) + ilk(i), k = 1,2,...,K (1)

1Pi- 7rKdet(_ ) exp -- _ _j(i)(6-')jk (3)
j,k--1

1The overbar denotes a complex conjugate.

2The arguments _1(i) .... , _K(i) of Pi are not shown explicitly.
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It is convenient to introduce the quantities

#1:
_k- v%1:

Then

= +

and the elements of the inverse matrix are

2cQ crk

where

Also, we have

K

7 = 1 + E ITk 12
k=l

det ((_) = 2K c, 7

Using these values in Eq. (3),

Pi ----

We define the likelihood function as

1 _-_ In piA= T
i=l

In terms of the sample covarianees

(4)

(5)

(6)

(7)

(8)

=

(9)

(10)

L
1

?tj1: = --£ E ?j(i)_k(i)
i=1

It follows from Eq. (9) that

K

A = - E In (2_ra_) - In (7)
1:=1

(11)

1 K 1_ (Sjk l_-jT_k)_1 -j-g;a_ -
(12)

III. Cascaded Maximum-Likelihood
Estimates

For maximum-likelihood estimates Sk and _k, or equiv-
%

alently Tk and &_, we need to solve the equations obtained

by setting the derivatives of A equal to zero. This sys-
tem of equations must be solved iteratively. It need not

have a unique solution, for the parameters are not even
determined by the statistics of the signals [Eq. (1)] un-
less at least three of the S_ are nonzero. For this rea-

son, this approach is not pursued here. We assume that

the a1: are estimated from separate observations with the

antenna pointed "off source." These noise estimates are
themselves maximum-likelihood estimates obtained from

the noise samples by differentiating Eq. (12) with respect

to _j (assuming 7_k = 0):

where 5jj is given by Eq. (11). The maximum-likelihood
estimates of the 7_1:use these noise estimates.

Differentiating Eq. (12) with respect to Tj, we get

1 1 K 1 akm_mmTk)
k,rn= i

1 K 1 _ ~

+ _ _-_;a_,_ = 0

It can be shown that this is equivalent to the simpler con-
dition
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K

a_jn --57_
k=l O'kO'j

Replacing the parameters by their estimates, we get

K

k_l_k_ _ k

This equation states that the complex K vector with com-

ponents :Fk is an eigenvector of the matrix composed of

the elements ?zkj/(&k&j), with eigenvalue 5q. If we replace

the matrix elements by their mean values, using the true
values of the crk, then this matrix has K - 1 eigenvalues

equal to 2, and one larger eigenvalue 27, corresponding

to the eigenvector 7_k. Hence, the estimates _k can be

found in terms of the crk by numerically finding the largest

eigenvalue of the matrix in Eq. (13) and its eigenvector.

The eigenvector must be scaled so that the eigenvalue 2"}

satisfies the relation [from Eq. (7)]

K

= 1+ _ I_kl2 (14)
k=l

The method for solving Eq. (13) is described briefly in
Appendix A.

&j = crj + 5crj (17)

Then the estimates Tj are close to the true values,

Tj=_+5_. (18)

Expand Eq. (15), keeping only those terms which are

of first order in the deviations 65jk, &rj, and 6_-. We get

g _ _

+ =
k=l tzcrk_rJ zc%aj 2_k_rj \ crj _ /j

K

7_ +_ _3(_5¢_+_k_)
k=l

Using the formula in Eq. (5) and simplifying, the result is

K

(7-1)/i_ + _ _ 7_ktiCk =
k=l

K 65kj _ KF__-_-__ - _ F_ I_.l2
k=l k=l

IV. Variance of the Cascaded ML Estimates

for the T/

For a large L, the sample covariances 5jk are close to
their mean values:

aj_ = _ak + aaj_ (15)

where the difference 55j_ has a mean of zero and a small

variance. It is easily shown that

4

E(6aj k'6alm ) = _ o'j o'_ crl _m

If the estimates &i are close to the correct values,

(16)

-(7+ 1)_ 6qj (19)
a1

If we multiply this equation by 57_3 and sum over j, we
get

K

(7-1) E (_ST_ + T_}--_) =
k=l

K

_: _, _,__ 57_,,_,,_ -i25,,_, _IT_
j,k=l j=l

(50)

This equation determines the real part of _diT_. The

imaginary part of this sum is undetermined, since the 7_
can be multiplied by an arbitrary common complex factor

of absolute value 1. From Eq. (50), we can set
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1 # 6akin_.,TkE_T_ - 2(_- 1) 2_:m
k----1 1j ----

K

, (21)7-1

Square Eq. (22) and take the expected value. We de-

note the deviation of Eq. (22) by the prefix 60 to distin-

guish it from that obtained by other methods below. Using

Eqs. (16) and (23), the result is

1{1[E(16oTjl2) - (_ - 1) 2 _7 7 - 1 - ITjl 2 A- _lYjl

where w is a real quantity not yet specified. Using this

expression in Eq. (19), we get 1 [ ITJl2 L -7+1 ~[4+_-K _ 1_14-

K

(7-1)6_" = E 5akj Tk TJ
k=l 2ak_rj 2('/- 1)

(24)

K

X E 20"k O'rn
rn , k ----1

- (7 + 1)_jJ Tj - jw_. (221

In the following, we will take w = 0, since this turns

out to give the best results. The estimate &j, found with

the signal absent, is

Expanding as above,

The sum over j of this expression leads to

K

_E(16o_l 2) =
j=l

1{1 1] 1-/-1 -_7 K-l+_7 +4---i

x (7-t- 1) 2 (_:-1_ 2 _-_1_14 (25)
k=l

Now we consider another estimate, where the first chan-

nel is taken to be the one with maximum signal strength,

and _51 (or 7_1) is estimated first. By Eq. (5),

E(an) = 2a_(1 + [T:I 2)

This leads to the estimate

6o'_ 6ajj

o.j _ 4_7 i_,1= a,,- _-g_2 1 (26)

Using Eq, (16) (with no signal), we get The resulting error 62T1 has variance

(1 M)(1A-]T1,2) _E (6o'j6o',_:") 1 6 (23) E(I6=_I 2) = + (27.)

where M is the number of samples used in the noise esti-

mates.

This estimate can be used to obtain an estimate for Tj for

j > 2 by using
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alj _ 2)Tj -- -_ (j >

2&lgrjT1

(28)

The variance of this estimate is

E(]_2L 12)=

1 [ 12)2 41_Pl12(1131 14LI_114 ILl2(1 + 17_ + + 12)

(1
+ 4MIT_I 4. + IL?)

(29)

1

E(16_,il u) _ 8Lo._1% p [IL f(1 ÷ 1%12) 5 + 4(1 - _j,)

x 1_il2(1 + 1_'112)]+

× (1+4_._11LI 2+41Ll4) (32a)

A modified form of this last method was considered in

[1]. There, T1 was estimated from Eq. (26) based on N

samples, and the other Tj were estimated by Eq. (28) for
a later set of L samples. For this method, it can be shown

that

V. Variance of the Combining-Weight
Estimates

We now consider estimates for the weights

obtained from the cascaded ML estimates of the signal-to-

noise ratio (SNR) and noise parameters. The estimate

__ S._ T._ (30)

has a deviation 6Cvj from the true value, given to the first

order by

6tvj -- Vz_a j crj ]

The mean-square value of this deviation can be computed
for each of the estimation methods under consideration.

We find

l {1[ 1 lE(I_°_JI2) = 2(_ - l)2_y T _ _ - 1 -IL + _tYJl _"

' [IL? _ 47 ,LI4+4721LI2]} (31)+ 4-M L(7 - 1)2 k=lE I_kl4 i---- 1

E(I,_jl 2) = ILl2( 1 + ILl2) 2
8No'} IL 14

-t- (1 - ¢Sjl)

(I + IL I_)(1 + I_12)

x (1 + 4ajllLI 2 +4ILl 4) (32b)

These values, divided by 1_,_12are plotted in Fig. 1.

The values 17_1" = 0.O5 and IL I_ = 0.005, j >__2, were
used. M was fixed at the value I00,000, and N = L. There

is no observable difference between the curves based on

Eqs. (32a) and(32b). For a small L, the mean-square error
from the maximum-likelihood formula is lower by 2.2 dB.

For a large L, the other methods are better, but this is in

an impractical range of the parameters. M should be at

least as large as L, since the M samples provide noise esti-
mates on which the subsequent estimates are based. The

failure of the maximum-likelihood method in this range,

which was applied only for estimating the L, shows that

these estimates can be more strongly affected by errors in

the noise estimates.

Figure 2 shows the maximum-likelihood curve for var-
ious values of M. These curves have the same general

appearance as the corresponding curves for the method

given in [1]. Again, on the right side of the figure, where
the curves for various M are widely separated, the errors

shown are higher than those shown in [1]. The significant

points on these curves, with M >_ L, show an improvement

over [1].
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VI. Joint Maximum-Likelihood Estimates for

the Equal Noise Case

An important special case which is seen in practice has

all the _rj equal. Here maximum-likelihood estimates can
be used to simultaneously determine the noise and signal

levels (the problems cited above no longer apply).

Denote the common value of the aj by _r. The formula

in Eq. (12) for h becomes

A = -K in (27r__) - in (7)

where w is again an undetermined real quantity which will

be set equal to 0. The noise error &r can be found from

Eq. (34). Eliminating 5Tj by the use of Eq. (36), the result
is

5c_ 1
-- m

2(K-1)

x 2_r2 7- 1 55"_ _._Tk (37)
k:l , :1 ZO" /

j,k=l

(33)

To find the noise and signal amplitudes simultaneously

by the maximum-likelihood method, set the derivative of

A with respect to _r equal to zero, and solve this equation

together with Eq. (13). Simplifying the derivative by using

Eq. (13), the equation obtained is

K

2&_(K - 1 + "_) = _Skk (34)
k=l

Eliminating & from Eq. (13), we get

k=l k=l

(35)

As before, this equation is solved by taking the vector with

components Tj to be the eigenvector of the matrix (akj)

corresponding to the largest eigenvalue. This eigenvalue

must be the coefficient of Tj on the right, which determines

-_, and hence determines the Tj up to a common complex
factor of absolute value 1. The noise estimate is then given

by Eq. (34).

To get variance estimates, proceed as before. The equa-

tion analogous to Eq. (22) is

K

k=, 2a 2(/_'-'1")("7- 1) Tj

K -fi5_._ _ _ 7Tj 5_kk

rn,k=l

---J_L (36)

To get variance estimates, square the expressions in

Eqs. (36) and (37) and take the expected value. Denoting

the deviation in Tj by the prefix 64, we get

E(154_ 12)=

_ I K - 2"1
1 {17 [7_ 1- [_j[2 + _/_________17iTs. ' j} (38)

(7 1) 2

E{5_2_ __ 1
\_/ 4L(K-1)

(39)

Summing Eq. (38),

K 7 [ 1 K ]E(154TjI_)- L(_-- 1) K- 1 + _-=----l-_17]
j=l

(40)

Using the above formulas with Eq. (30),

1

E[io4wi,2)''¢ _' '_ 2a2(7- 1) 2

(27 - 112 I%IJ+ 4--(-_--U (41)

VII. Performance of the Weight Estimates

We now consider the combined signal, formed by taking

the weighted sum
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K

s(i) = (42)
k=l

where the weights are based on data before time i. If we
use wk = t_k + 6t_k and express _k(i) by Eq. (1), we get
four terms:

K K

5(i) = E tvkSkfi(i) + E tvkfik(i)
k=l k=l

K K

+ _ Ska(i)6t?k + _ fik(i)6t?k
k=l k=l

K

= Z t_k,_kfi(i) + E1 + E2 + E3 (43)
k=l

The first term is the desired signal. The other terms are

contributions to the error which can be considered sepa-

rately, since their cross products have zero expectation.

Averaging over values of the current signal first, we have

K

E(IEll 2) = _ 2  l+kl : - 1 (44)
k=l

E(IEz[ 2) = _E 2crkT_k6ff)k (45)

(2) Method 2: the method based on Eqs. (26) and (28).

(3) Method 3: the modification of method 2 described
in Section V.

In method 3, 7_1 is estimated from Eq. (26) based on N

samples, and the other _ are found from Eq. (28) using a

later set of L samples. This is the method treated in [1].

The quantity E(IEzl 2 + IE312)/I _ +k_kl z, the relative

mean-square error caused by weight errors, is plotted for

these three methods in Fig. 3. The formulas used are given
in Appendix B. The values are plotted as a function of

the signal-to-noise ratio, with the parameters L, M, and

N fixed. (Throughout the curves, we take the SNR in

every other channel to be one-tenth as large as the SNR

in channel 1.) It is seen that method 2 for N = L is

better than method 3, although the difference is small at

a low SNR. (For N >> L, method 3 would be better

than method 2.) Of course, the ML value (method 1) is

smallest, but the difference from method 2 is small at high
SNR.

If we assume all channels have the same noise level, then
method 4, the maximum-likelihood method of Section VI

can also be considered. Comparing method 4 with the
first three methods, it is seen that those methods can be

improved by using a unified single noise estimate from the

off-signal data. These improved methods are denoted by
1', 2', and 3'. The relative error for these four methods

is shown in Fig. 4 (formulas are given in Appendix B).

The behavior shown in Fig. 3 occurs here again, with the

curves at a lower level, and method 4 is slightly better
than method 1'.

(46)

These quantities are easily evaluated by using previous
formulas.

The following estimation methods are referred to in

Figs. 3 and 4:

(1) Method 1: the maximum-likelihood method of Sec-
tion I.

VIII. Conclusions

Maximum-likelihood methods for combining weight es-

timation provide a consistent decrease in the mean-square

error of the combined signal, as compared with other esti-

mation methods, at the cost of a small increase in compu-
tational complexity. The part of the error which is caused

by weight errors is decreased by over 2 dB, provided that

at least as many samples are used to estimate the noise
variance as the 7_k. This can reduce the number of sam-

ples needed for equivalent performance to 30 percent less
than the number needed by method 3.
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Appendix A

Method for Solving Eq. (13)

The mathematical problem posed by Eq. Q3) is the

following: Given a K x K Hermitian matrix A, find its

maximum eigenvalue and the corresponding eigenvector.

If the maximum eigenvalue is also the eigenvalue of
maximum absolute value, then this can be accomplished

by an iterative procedure. Choose any convenient starting

vector _0.

If we take _,_ = /_Xn-1 for n :> 1, then _,, when

normalized, approaches the eigenvector which is sought.

Choose positive numbers c, so that

_kXn-- 1

Cn

has unit length. Then xn approaches the eigenvector and

cn approaches the eigenvalue.

The rate of convergence of this procedure depends on
the size of the next largest eigenvalue, as compared with

the first. In our application, the convergence is slow for low

SNR. However, the method can be modified to speed up

the convergence. When suitably modified, the difference

between z_. and the eigenvector decreases by a factor of

the order of (7 - 1)/v_- at each step.
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Appendix B

Formulas Used for Figs. 3 and 4

The formulas used for Figs. 3 and 4 are presented here.

For method 1,

E(tE_I2 + IEal2): 1,(¼,75 + K - 1)
L(,7- 1)

+ 1, [1-8,7+41, 5 K ]M(1,- 1) 4-(7: i_ EIT'kl4 + 1'
k--1

For method 2,

1 [1,(1,--1)(1+ 1_112)_+ (K - 1)1+ I_1_]
E(IE21_+ lea1_)= _ [ 41Ell4 - _-_ J

77(,7- I) "7- I

41=Pll_ I:P1p
+ 2 + 21T_15+ _ ITk14

k=l

(B-l)

(B-2)

For method 3,

1 (I+ITll2) 5 1 [K-2+,7 2 ]E(IE2] 2 + ]E3I 2) = _,7(1, - 1) NITll 4-z + _ ]TI_ + K - ,7 - 1

1 [77(77g_l) 3' - 1
+ K [ 41T_I4 IT_I2

+ 2 + 21_115+ _--] I_kl4
k=l

(B-3)

For method 4,

For method 1',

1 3' 1 5
,7 (_- _) 1

E(IE215+IE315)-- L(4--1) '7_ +K-I+ KL-I ]

E(IE215+ lE312)= ,7(¼,72 + K - 1)
L(,7- 1)

_(,7- ½)_
+

MK(,7- 1)

(B-4)

(B-_)

For method 2',

1 [,Th: 1)(1 + ITII_) 5 + (K - 1)
E(IE212 + lEa12) = -_ [ 4[Tl[ 4

1+ 1_,t21 1 [7(7--1) ,72- 1
I?, I_ J + _ L 4IT,14 I_xP

(B-6)
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For method 3',

1 (1 + 17_112)2
E(]E2] 2 + ]E312) = _7(7- 1) =

N[Tll 4
1 [K-2+7 2

I [_(-ry_x) _- 1
+ M-K t 4ITI[ 4 ]Tll 2 +72+7+1] (B-7)
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